Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.846
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Phytomedicine ; 128: 155497, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640855

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a significant public health issue, ranking as one of the predominant cancer types globally in terms of incidence. Intriguingly, Arenobufagin (Are), a compound extracted from toad venom, has demonstrated the potential to inhibit tumor growth effectively. PURPOSE: This study aimed to explore Are's molecular targets and unravel its antitumor mechanism in CRC. Specifically, we were interested in its impact on immune checkpoint modulation and correlations with HSP90ß-STAT3-PD-L1 axis activity. METHODS: We investigated the in vivo antitumor effects of Are by constructing a colorectalcancer subcutaneous xenograft mouse model. Subsequently, we employed single-cell multi-omics technology to study the potential mechanism by which Are inhibits CRC. Utilizing target-responsive accessibility profiling (TRAP) technology, we identified heatshock protein 90ß (HSP90ß) as the direct target of Are, and confirmed this through a microscale thermophoresis experiment (MST). Further downstream mechanisms were explored through techniques such as co-immunoprecipitation, Western blotting, qPCR, and immunofluorescence. Concurrently, we arrived at the same research conclusion at the organoid level by co-cultivating with immune cells. RESULTS: We observed that Are inhibits PD-Ll expression in CRC tumor xenografts at low concentrations. Moreover, TRAP revealed that HSP90ß's accessibility significantly decreased upon Are binding. We demonstrated a decrease in the activity of the HSP90ß-STAT3-PD-Ll axis following low-concentration Are treatment in vivo. The PDO analysis showed improved enrichment of lymphocytes, particularly T cells, on the PDOs following Are treatment. CONCLUSION: Contrary to previous research focusing on the direct cytotoxicity of Are towards tumor cells, our findings indicate that it can also inhibit tumor growth at lower concentrations through the modulation of immune checkpoints. This study unveils a novel anti-tumor mechanism of Are and stimulates contemplation on the dose-response relationship of natural products, which is beneficial for the clinical translational application of Are.


Subject(s)
Bufanolides , Colorectal Neoplasms , HSP90 Heat-Shock Proteins , STAT3 Transcription Factor , Xenograft Model Antitumor Assays , Bufanolides/pharmacology , Animals , Colorectal Neoplasms/drug therapy , Humans , Mice , STAT3 Transcription Factor/metabolism , T-Lymphocytes/drug effects , Cell Line, Tumor , B7-H1 Antigen , Mice, Nude , Mice, Inbred BALB C , Amphibian Venoms/pharmacology , Female
2.
Clin. transl. oncol. (Print) ; 26(4): 864-871, Abr. 2024. tab
Article in English | IBECS | ID: ibc-VR-49

ABSTRACT

Purpose: Clinical practice guidelines recommend that all patients with metastatic colorectal cancer (mCRC) should be tested for mismatch repair deficiency (dMMR) or microsatellite instability-high (MSI-H). We aimed to describe the dMMR/MSI-H testing practice in patients with mCRC in Spanish centers.Methods: Multicenter, observational retrospective study that included patients newly diagnosed with mCRC or who progressed to a metastatic stage from early/localized stages. Results: Three hundred patients were included in the study from May 2020 through May 2021, with a median age of 68 years, and two hundred twenty-five (75%) had stage IV disease at initial diagnosis; two hundred eighty-four patients received first-line treatment, and dMMR/MSI-H testing was performed in two hundred fifty-one (84%) patients. The results of the dMMR/MSI-H tests were available in 61 (24%) of 251 patients before the diagnosis of metastatic disease and in 191 (81%) of 236 evaluable patients for this outcome before the initiation of first-line treatment. Among the 244 patients who were tested for dMMR/MSI-H with IHC or PCR, 14 (6%) were MMR deficient. The most frequent type of first-line treatment was the combination of chemotherapy and biological agent, that was received by 71% and 50% of patients with MMR proficient and deficient tumors, respectively, followed by chemotherapy alone, received in over 20% of patients in each subgroup. Only 29% of dMMR/MSI-H tumors received first-line immunotherapy. Conclusion: Our study suggests that a high proportion of patients with mCRC are currently tested for dMMR/MSI-H in tertiary hospitals across Spain. However, there is still room for improvement until universal testing is achieved.(AU)


Subject(s)
Humans , Male , Female , Neoplasm Metastasis , Microsatellite Instability , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Retrospective Studies
3.
Nutrients ; 16(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38613029

ABSTRACT

Methionine dependence is a characteristic of most cancer cells where they are unable to proliferate when the essential amino acid methionine is replaced with its precursor homocysteine in the growing media. Normal cells, on the other hand, thrive under these conditions and are referred to as methionine-independent. The reaction that adds a methyl group from 5-methyltetrahydrofolate to homocysteine to regenerate methionine is catalyzed by the enzyme methionine synthase with the cofactor cobalamin (vitamin B12). However, decades of research have shown that methionine dependence in cancer is not due to a defect in the activity of methionine synthase. Cobalamin metabolism has been tied to the dependent phenotype in rare cell lines. We have identified a human colorectal cancer cell line in which the cells regain the ability to proliferation in methionine-free, L-homocystine-supplemented media when cyanocobalamin is supplemented at a level of 1 µg/mL. In human SW48 cells, methionine replacement with L-homocystine does not induce any measurable increase in apoptosis or reactive oxygen species production in this cell line. Rather, proliferation is halted, then restored in the presence of cyanocobalamin. Our data show that supplementation with cyanocobalamin prevents the activation of the integrated stress response (ISR) in methionine-deprived media in this cell line. The ISR-associated cell cycle arrest, characteristic of methionine-dependence in cancer, is also prevented, leading to the continuation of proliferation in methionine-deprived SW48 cells with cobalamin. Our results highlight differences between cancer cell lines in the response to cobalamin supplementation in the context of methionine dependence.


Subject(s)
Colorectal Neoplasms , Methionine , Humans , Methionine/pharmacology , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase , Vitamin B 12/pharmacology , Homocystine , Racemethionine , Cell Line , Homocysteine , Colorectal Neoplasms/drug therapy
4.
Mol Nutr Food Res ; 68(8): e2300820, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38600874

ABSTRACT

Garlic is rich in bioactive compounds that are effective against colon cancer cells. This study tests the antioxidant and antiproliferative effects of cold-extracted white and black garlic extracts. Black garlic extracted in water (SSU) exhibits the highest antioxidant activity, phenolic content, and flavonoid content, while black garlic extracted in ethanol (SET) shows the lowest values. Caspase-3 activity is notably higher in the white garlic extracted in methanol (BME), white garlic extracted in methanol combines with 5-FU, black garlic extracted in ethanol (SET), black garlic extracted in ethanol combines with 5-fluorouracil (5-FU), and 5-FU treatments compare to the control group (p > 0.05). BME+5-FU displays the highest caspase-8 activity (p < 0.05). A decrease in NF-κB levels is observed in the SET+5-FU group (p>0.05), while COX-2 activities decrease in the BME, SET+5-FU, SET, and 5-FU groups (p>0.05). Wound healing increases in the BME, BME+5-FU, SET+5-FU, and 5-FU groups (p < 0.05). In conclusion, aqueous black garlic extract may exhibit pro-oxidant activity despite its high antioxidant capacity. It is worth noting that exposure to heat-treated food and increased sugar content may lead to heightened inflammation and adverse health effects. This study is the first to combine garlic with chemo-preventive drugs like 5-FU in Caco-2 cells.


Subject(s)
Antioxidants , Cell Proliferation , Fluorouracil , Garlic , Plant Extracts , Humans , Garlic/chemistry , Plant Extracts/pharmacology , Fluorouracil/pharmacology , Cell Proliferation/drug effects , Caco-2 Cells , Antioxidants/pharmacology , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , NF-kappa B/metabolism , Colorectal Neoplasms/drug therapy , Phenols/pharmacology , Phenols/analysis , Cyclooxygenase 2/metabolism , Caspase 3/metabolism , Flavonoids/pharmacology , Flavonoids/analysis
5.
Med Oncol ; 41(5): 123, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652404

ABSTRACT

Colon cancer is on the rise in both men and women. In addition to traditional treatment methods, herbal treatments from complementary and alternative medicine are actively followed. Naturally derived from plants, thymoquinone (TQ) has drawn a lot of attention in the field of cancer treatment. MK-801, an N-methyl-D-aspartate agonist, is used to improve memory and plasticity, but it has also lately been explored as a potential cancer treatment. This study aimed to determine the roles of N-Methyl-D-Aspartate agonists and Thymoquinone on mitochondria and apoptosis. HT-29 cells were treated with different TQ and MK-801 concentrations. We analyzed cell viability, apoptosis, and alteration of mitochondria. Cell viability significantly decreased depending on doses of TQ and MK-801. Apoptosis and mitochondrial dysfunctions induced by low and high doses of TQ and MK-801. Our study emphasizes the need for further safety evaluation of MK-801 due to the potential toxicity risk of TQ and MK-801. Optimal and toxic doses of TQ and MK-801 were determined for the treatment of colon cancer. It should be considered as a possibility that colon cancer can be treated with TQ and MK-801.


Subject(s)
Apoptosis , Benzoquinones , Cell Survival , Colorectal Neoplasms , Dizocilpine Maleate , Mitochondria , Receptors, N-Methyl-D-Aspartate , Humans , Benzoquinones/pharmacology , Apoptosis/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , HT29 Cells , Dizocilpine Maleate/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Cell Survival/drug effects , Membrane Potential, Mitochondrial/drug effects
6.
Nanoscale ; 16(16): 7976-7987, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38567463

ABSTRACT

Collective functionalization of the phytochemicals of medicinal herbs on nanoparticles is emerging as a potential cancer therapeutic strategy. This study presents the facile synthesis of surface-functionalized gold nanoparticles using Bacopa monnieri (Brahmi; Bm) phytochemicals and their therapeutically relevant mechanism of action in the colorectal cancer cell line, HT29. The nanoparticles were characterized using UV-visible spectroscopy, TEM-EDAX, zeta potential analysis, TGA, FTIR and 1H NMR spectroscopy, and HR-LC-MS. The particles (Bm-GNPs) were of polygonal shape and were stable against aggregation. They entered the target cells and inhibited the viability and clonogenicity of the cells with eight times more antiproliferative efficacy (25 ± 1.5 µg mL-1) than Bm extract (Bm-EX). In vitro studies revealed that Bm-GNPs bind tubulin (a protein crucial in cell division and a target of anticancer drugs) and disrupt its helical structure without grossly altering its tertiary conformation. Like other antitubulin agents, Bm-GNPs induced G2/M arrest and ultimately killed the cells, as confirmed using flow cytometry analyses. ZVAD-FMK-mediated global pan-caspase inhibition and the apparent absence of cleaved caspase-3 in treated cells indicated that the death did not involve the classic apoptosis pathway. Cellular ultrastructure analyses, western immunoblots, and in situ immunofluorescence visualization of cellular microtubules revealed microtubule-acetylation-independent induction of autophagy as the facilitator of cell death. Together, the data indicate strong antiproliferative efficacy and a possible mechanism of action for these designer nanoparticles. Bm-GNPs, therefore, merit further investigations, including preclinical evaluations, for their therapeutic potential as inducers of non-apoptotic cell death.


Subject(s)
Autophagy , Colorectal Neoplasms , Gold , Metal Nanoparticles , Humans , Gold/chemistry , Gold/pharmacology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Metal Nanoparticles/chemistry , Autophagy/drug effects , Acetylation , Microtubules/metabolism , Microtubules/drug effects , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenocarcinoma/drug therapy , HT29 Cells , Caspases/metabolism , Phytochemicals/pharmacology , Phytochemicals/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Tubulin/metabolism , Tubulin/chemistry
7.
Chin J Nat Med ; 22(4): 329-340, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658096

ABSTRACT

The management of colorectal cancer (CRC) poses a significant challenge, necessitating the development of innovative and effective therapeutics. Our research has shown that notoginsenoside Ft1 (Ng-Ft1), a small molecule, markedly inhibits subcutaneous tumor formation in CRC and enhances the proportion of CD8+ T cells in tumor-bearing mice, thus restraining tumor growth. Investigation into the mechanism revealed that Ng-Ft1 selectively targets the deubiquitination enzyme USP9X, undermining its role in shielding ß-catenin. This leads to a reduction in the expression of downstream effectors in the Wnt signaling pathway. These findings indicate that Ng-Ft1 could be a promising small-molecule treatment for CRC, working by blocking tumor progression via the Wnt signaling pathway and augmenting CD8+ T cell prevalence within the tumor environment.


Subject(s)
CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Ubiquitin Thiolesterase , Wnt Signaling Pathway , Animals , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , CD8-Positive T-Lymphocytes/drug effects , Mice , Humans , Wnt Signaling Pathway/drug effects , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Cell Line, Tumor , Signal Transduction/drug effects , beta Catenin/metabolism , Mice, Inbred BALB C
8.
Chin J Nat Med ; 22(4): 318-328, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658095

ABSTRACT

Double cortin-like kinase 1 (DCLK1) exhibits high expression levels across various cancers, notably in human colorectal cancer (CRC). Diacerein, a clinically approved interleukin (IL)-1ß inhibitor for osteoarthritis treatment, was evaluated for its impact on CRC proliferation and migration, alongside its underlying mechanisms, through both in vitro and in vivo analyses. The study employed MTT assay, colony formation, wound healing, transwell assays, flow cytometry, and Hoechst 33342 staining to assess cell proliferation, migration, and apoptosis. Additionally, proteome microarray assay and western blotting analyses were conducted to elucidate diacerein's specific mechanism of action. Our findings indicate that diacerein significantly inhibits DCLK1-dependent CRC growth in vitro and in vivo. Through high-throughput proteomics microarray and molecular docking studies, we identified that diacerein directly interacts with DCLK1. Mechanistically, the suppression of p-STAT3 expression following DCLK1 inhibition by diacerein or specific DCLK1 siRNA was observed. Furthermore, diacerein effectively disrupted the DCLK1/STAT3 signaling pathway and its downstream targets, including MCL-1, VEGF, and survivin, thereby inhibiting CRC progression in a mouse model, thereby inhibiting CRC progression in a mouse model.


Subject(s)
Anthraquinones , Cell Proliferation , Colorectal Neoplasms , Doublecortin-Like Kinases , Intracellular Signaling Peptides and Proteins , Protein Serine-Threonine Kinases , STAT3 Transcription Factor , Signal Transduction , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Humans , Signal Transduction/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Mice , Cell Proliferation/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Anthraquinones/pharmacology , Cell Line, Tumor , Drug Repositioning , Apoptosis/drug effects , Cell Movement/drug effects , Mice, Inbred BALB C , Mice, Nude
9.
J Nanobiotechnology ; 22(1): 202, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658952

ABSTRACT

Multi-modal combination therapy is regarded as a promising approach to cancer treatment. Combining chemotherapy and phototherapy is an essential multi-modal combination therapy endeavor. Ivermectin (IVM) is a potent antiparasitic agent identified as having potential antitumor properties. However, the fact that it induces protective autophagy while killing tumor cells poses a challenge to its further application. IR780 iodide (IR780) is a near-infrared (NIR) dye with outstanding photothermal therapy (PTT) and photodynamic therapy (PDT) effects. However, the hydrophobicity, instability, and low tumor uptake of IR780 limit its clinical applications. Here, we have structurally modified IR780 with hydroxychloroquine, an autophagy inhibitor, to synthesize a novel compound H780. H780 and IVM can form H780-IVM nanoparticles (H-I NPs) via self-assembly. Using hyaluronic acid (HA) to modify the H-I NPs, a novel nano-delivery system HA/H780-IVM nanoparticles (HA/H-I NPs) was synthesized for chemotherapy-phototherapy of colorectal cancer (CRC). Under NIR laser irradiation, HA/H-I NPs effectively overcame the limitations of IR780 and IVM and exhibited potent cytotoxicity. In vitro and in vivo experiment results showed that HA/H-I NPs exhibited excellent anti-CRC effects. Therefore, our study provides a novel strategy for CRC treatment that could enhance chemo-phototherapy by modulating autophagy.


Subject(s)
Autophagy , Colorectal Neoplasms , Drug Repositioning , Ivermectin , Nanoparticles , Autophagy/drug effects , Animals , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/therapy , Humans , Mice , Nanoparticles/chemistry , Ivermectin/pharmacology , Ivermectin/chemistry , Cell Line, Tumor , Indoles/chemistry , Indoles/pharmacology , Mice, Inbred BALB C , Mice, Nude , Photochemotherapy/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Phototherapy/methods , Hyaluronic Acid/chemistry , Hydroxychloroquine/pharmacology , Hydroxychloroquine/chemistry , Photothermal Therapy/methods
10.
J Ethnopharmacol ; 330: 118195, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38641080

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Licorice is a frequently used herbal medicine worldwide, and is used to treat cough, hepatitis, cancer and influenza in clinical practice of traditional Chinese medicine. Modern pharmacological studies indicate that prenylated flavonoids play an important role in the anti-tumor activity of licorice, especially the tumors in stomach, lung, colon and liver. Wighteone is one of the main prenylated flavonoids in licorice, and its possible effect and target against colorectal cancer have not been investigated. AIM OF THE STUDY: This study aimed to investigate the anti-colorectal cancer effect and underlying mechanism of wighteone. MATERIALS AND METHODS: SW480 human colorectal cancer cells were used to evaluate the in vitro anti-colorectal cancer activity and Akt regulation effect of wighteone by flow cytometry, phosphoproteomic and Western blot analysis. Surface plasmon resonance (SPR) assay, molecular docking and dynamics simulation, and kinase activity assay were used to investigate the direct interaction between wighteone and Akt. A nude mouse xenograft model with SW480 cells was used to verify the in vivo anti-colorectal cancer activity of wighteone. RESULTS: Wighteone inhibited phosphorylation of Akt and its downstream kinases in SW480 cells, which led to a reduction in cell viability. Wighteone had direct interaction with both PH and kinase domains of Akt, which locked Akt in a "closed" conformation with allosteric inhibition, and Gln79, Tyr272, Arg273 and Lys297 played the most critical role due to their hydrogen bond and hydrophobic interactions with wighteone. Based on Akt overexpression or activation in SW480 cells, further mechanistic studies suggested that wighteone-induced Akt inhibition led to cycle arrest, apoptosis and autophagic death of SW480 cells. Moreover, wighteone exerted in vivo anti-colorectal cancer effect and Akt inhibition activity in the nude mouse xenograft model. CONCLUSION: Wighteone could inhibit growth of SW480 cells through allosteric inhibition of Akt, which led to cell cycle arrest, apoptosis and autophagic death. The results contributed to understanding of the anti-tumor mechanism of licorice, and also provided a rationale to design novel Akt allosteric inhibitors for the treatment of colorectal cancer.


Subject(s)
Antineoplastic Agents, Phytogenic , Colorectal Neoplasms , Flavonoids , Glycyrrhiza , Mice, Nude , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Animals , Glycyrrhiza/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Cell Line, Tumor , Flavonoids/pharmacology , Flavonoids/isolation & purification , Flavonoids/therapeutic use , Flavonoids/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Docking Simulation , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Allosteric Regulation/drug effects , Mice , Mice, Inbred BALB C , Apoptosis/drug effects , Male
11.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1455-1466, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621929

ABSTRACT

Ulcerative colitis is a chronic, recurrent, and nonspecific intestinal inflammatory disease, which is difficult to cure and has the risk of deterioration into related tumors. Long-term chronic inflammatory stimulation can increase the risk of cancerization. With the signaling pathway as a key link in the regulation of tumor microenvironments, nuclear factor-kappa B(NF-κB) is an important regulator of intestinal inflammation. It can also be co-regulated as downstream factors of other signaling pathways, such as TLR4, MAPK, STAT, PI3K, and so on. At present, a large number of animal experiments have proved that traditional Chinese medicine(TCM) can reduce inflammation by interfering with NF-κB-related signaling pathways, improve intestinal inflammation, and inhibit the progression of inflammation to tumors. This article reviewed the relationship between NF-κB-related signaling pathways and the intervention mechanism of TCM, so as to provide a reference for the clinical treatment of ulcerative colitis and the optimization of related cancer prevention strategies.


Subject(s)
Colitis, Ulcerative , Colorectal Neoplasms , Animals , Colitis, Ulcerative/complications , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Disease Models, Animal , Inflammation , Medicine, Chinese Traditional , NF-kappa B/genetics , NF-kappa B/metabolism , Signal Transduction , Tumor Microenvironment
12.
Phytomedicine ; 128: 155385, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569292

ABSTRACT

BACKGROUND: Xianlian Jiedu Decoction (XLJDD) has been used for the treatment of colorectal cancer (CRC) for several decades because of the prominent efficacy of the prescription. Despite the clear clinical efficacy of XLJDD, the anti-CRC mechanism of action is still unclear. PURPOSE: The inhibitory effect and mechanism of XLJDD on CRC were investigated in the azoxymethane/dextran sulfate sodium (AOM/DSS)-induced mice. METHODS: The AOM/DSS-induced mice model was adopted to evaluate the efficacy after administering the different doses of XLJDD. The therapeutic effects of XLJDD in treating AOM/DSS-induced CRC were investigated through histopathology, immunofluorescence and ELISA analysis methods. In addition, metabolomics profile and 16S rRNA analysis were used to explore the effective mechanisms of XLJDD on CRC. RESULTS: The results stated that the XLJDD reduced the number of tumor growth on the inner wall of the colon and the colorectal weight/length ratio, and suppressed the disease activity index (DAI) score, meanwhile XLJDD also increased body weight, colorectal length, and overall survival rate. The treatment of XLJDD also exhibited the ability to lower the level of inflammatory cytokines in serum and reduce the expression levels of ß-catenin, COX-2, and iNOS protein in colorectal tissue. The findings suggested that XLJDD has anti-inflammatory properties and may provide relief for those suffering from inflammation-related conditions. Mechanistically, XLJDD improved gut microbiota dysbiosis and associated metabolic levels of short chain fatty acids (SCFAs), sphingolipid, and glycerophospholipid. This was achieved by reducing the abundance of Turicibacter, Clostridium_sensu_stricto_1, and the levels of sphinganine, LPCs, and PCs. Additionally, XLJDD increased the abundance of Enterorhabdus and Alistipes probiotics, as well as the content of butyric acid and isovaleric acid. CONCLUSION: The data presented in this article demonstrated that XLJDD can effectively inhibit the occurrence of colon inner wall tumors by reducing the level of inflammation and alleviating intestinal microbial flora imbalance and metabolic disorders. It provides a scientific basis for clinical prevention and treatment of CRC.


Subject(s)
Azoxymethane , Colorectal Neoplasms , Dextran Sulfate , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Drugs, Chinese Herbal/pharmacology , Colorectal Neoplasms/drug therapy , Mice , Male , Disease Models, Animal , Metabolome/drug effects , Colon/drug effects , Colon/pathology , Colon/microbiology
13.
EBioMedicine ; 102: 105041, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484555

ABSTRACT

BACKGROUND: Chemoresistance is a critical factor contributing to poor prognosis in clinical patients with cancer undergoing postoperative adjuvant chemotherapy. The role of gut microbiota in mediating resistance to tumour chemotherapy remains to be investigated. METHODS: Patients with CRC were categorised into clinical benefit responders (CBR) and no clinical benefit responders (NCB) based on chemotherapy efficacy. Differential bacterial analysis using 16S rRNA sequencing revealed Desulfovibrio as a distinct microbe between the two groups. Employing a syngeneic transplantation model, we assessed the effect of Desulfovibrio on chemotherapy by measuring tumour burden, weight, and Ki-67 expression. We further explored the mechanisms underlying the compromised chemotherapeutic efficacy of Desulfovibrio using metabolomics, western blotting, colony formation, and cell apoptosis assays. FINDINGS: In comparison, Desulfovibrio was more abundant in the NCB group. In vivo experiments revealed that Desulfovibrio colonisation in the gut weakened the efficacy of FOLFOX. Treatment with Desulfovibrio desulfuricans elevates serum S-adenosylmethionine (SAM) levels. Interestingly, SAM reduced the sensitivity of CRC cells to FOLFOX, thereby promoting the growth of CRC tumours. These experiments suggest that SAM promotes the growth and metastasis of CRC by driving the expression of methyltransferase-like 3 (METTL3). INTERPRETATION: A high abundance of Desulfovibrio in the intestines indicates poor therapeutic outcomes for postoperative neoadjuvant FOLFOX chemotherapy in CRC. Desulfovibrio drives the manifestation of METTL3 in CRC, promoting resistance to FOLFOX chemotherapy by increasing the concentration of SAM. FUNDING: This study is supported by Wuxi City Social Development Science and Technology Demonstration Project (N20201005).


Subject(s)
Colorectal Neoplasms , Desulfovibrio desulfuricans , Humans , Apoptosis , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Desulfovibrio desulfuricans/genetics , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Methyltransferases , RNA, Ribosomal, 16S/genetics , Leucovorin , Organoplatinum Compounds , Antineoplastic Combined Chemotherapy Protocols
14.
Phytomedicine ; 127: 155496, 2024 May.
Article in English | MEDLINE | ID: mdl-38471368

ABSTRACT

BACKGROUND: Colorectal adenoma is benign glandular tumor of colon, the precursor of colorectal cancer. But no pharmaceutical medication is currently available to treat and prevent adenomas. PURPOSE: To evaluate efficacy of Shenbai Granules, an herbal medicine formula, in reducing the recurrence of adenomas. STUDY DESIGN: This multicenter, randomized, double-blind, placebo-controlled clinical trial was conducted by eight hospitals in China. METHODS: Patients who had received complete polypectomy and were diagnosed with adenomas within the recent 6 months were randomly assigned (1:1) to receive either Shenbai granules or placebo twice a day for 6 months. An annual colonoscopy was performed during the 2-year follow-up period. The primary outcome was the proportion of patients with at least one adenoma detected in the modified intention-to-treat (mITT) population during follow-up for 2 years. The secondary outcomes were the proportion of patients with sessile serrated lesions and other specified polypoid lesions. The data were analyzed using logistic regression. RESULTS: Among 400 randomized patients, 336 were included in the mITT population. We found significant differences between treatment and placebo groups in the proportion of patients with at least one recurrent adenoma (42.5 % vs. 58.6 %; OR, 0.47; 95 % CI, 0.29-0.74; p = 0.001) and sessile serrated lesion (1.8 % vs. 8.3 %; OR, 0.20; 95 % CI, 0.06-0.72; p = 0.01). There was no significant difference in the proportion of patients developing polypoid lesions (70.7 % vs. 77.5 %; OR, 1.43; 95 % CI, 0.88-2.34; p = 0.15) or high-risk adenomas (9.0 % vs. 13.6 %; OR, 0.63; 95 % CI, 0.32-1.25; p = 0.18). CONCLUSION: Shenbai Granules significantly reduced the recurrence of adenomas, indicating that they could be an effective option for adenomas. Future studies should investigate its effects in larger patient populations and explore its mechanism of action to provide more comprehensive evidence for the use of Shenbai Granules in adenoma treatment.


Subject(s)
Adenoma , Colorectal Neoplasms , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colonoscopy , Double-Blind Method , Adenoma/drug therapy , Adenoma/surgery , Adenoma/diagnosis , China
15.
World J Microbiol Biotechnol ; 40(5): 139, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38514489

ABSTRACT

5-Fluorouracil (5-FU) is an effective chemotherapy drug in the treatment of colorectal cancer (CRC). However, auxiliary or alternative therapies must be sought due to its resistance and potential side effects. Certain probiotic metabolites exhibit anticancer properties. In this study evaluated the anticancer and potential therapeutic activities of cell extracts potential probiotic strains, Limosilactobacillus fermentum and Lactiplantibacillus plantarum isolated from the mule milk and the standard probiotic strain Lacticaseibacillus rhamnosus GG (LGG) against the human colon cancer cell line (HT-29) and the normal cell line (HEK-293) alone or in combination with 5-FU. In this study, L. plantarum and L. fermentum, which were isolated from mule milk, were identified using biochemical and molecular methods. Their probiotic properties were investigated in vitro and compared with the standard probiotic strain of the species L. rhamnosus GG. The MTT assay, acridine orange/ethidium bromide (AO/EB) fluorescent staining, and flow cytometry were employed to measure the viability of cell lines, cell apoptosis, and production rates of Th17 cytokines, respectively. The results demonstrated that the combination of lactobacilli cell extracts and 5-FU decreased cell viability and induced apoptosis in HT-29 cells. Furthermore, this combination protected HEK-293 cells from the cytotoxic effects of 5-FU, enhancing their viability and reducing apoptosis. Moreover, the combination treatment led to an increase in the levels of IL-17A, IFN-γ, and TNF-α, which can enhance anti-tumor immunity. In conclusion, the cell extracts of the lactobacilli strains probably can act as a potential complementary anticancer therapy.


Subject(s)
Colorectal Neoplasms , Probiotics , Humans , Animals , Fluorouracil/pharmacology , Cell Extracts , HEK293 Cells , Lactobacillus , Colorectal Neoplasms/drug therapy , Probiotics/pharmacology , Equidae
16.
Medicine (Baltimore) ; 103(12): e37477, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38518016

ABSTRACT

The objective of this study was to investigate the potential targets and mechanism of Rheum palmatum L in the treatment of colorectal cancer based on the network pharmacology and molecular docking, which could provide the theoretical basis for clinical applications. The potential components were screened using TCMSP database and articles. The gene targets of colorectal cancer were screened through the Genecards database and Online Mendelian Inheritance in Man database. Then, the common targets of components and colorectal cancer were used to construct the network diagram of active components and targets in Cytoscape 3.7.0. The protein-protein interaction (PPI) diagram was generated using String database, and the targets were further analyzed by gene ontology and Kyoto Encyclopedia of Genes and Genomes. Molecular docking between gene targets and active components was analyzed via AutoDock, and visualized through PyMol. Among this study, main targets might be TP53, EGF, MYC, CASP3, JUN, PTGS2, HSP90AA1, MMP9, ESR1, PPARG. And 10 key elements might associate with them, such as aloe-emodin, beta-sitosterol, gallic acid, eupatin, emodin, physcion, cis-resveratrol, rhein, crysophanol, catechin. The treatment process was found to involve nitrogen metabolism, p53 signaling pathway, and various cancer related pathway, as well as the AGE-RAGE signaling pathway, estrogen signaling pathway, interleukin-17 signaling pathway and thyroid hormone signaling pathway. The molecular docking was verified the combination between key components and their respective target proteins. Network pharmacological analysis demonstrated that R palmatum was could regulated p53, AGE-RAGE, interleukin-17 and related signaling pathway in colorectal cancer, which might provide a scientific basis of mechanism.


Subject(s)
Colorectal Neoplasms , Drugs, Chinese Herbal , Emodin , Rheum , Humans , Molecular Docking Simulation , Interleukin-17 , Tumor Suppressor Protein p53 , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
17.
Int J Mol Sci ; 25(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38542344

ABSTRACT

Natural products have been a long-standing source for exploring health-beneficial components from time immemorial. Modern science has had a renewed interest in natural-products-based drug discovery. The quest for new potential secondary metabolites or exploring enhanced activities for existing molecules remains a pertinent topic for research. Resveratrol belongs to the stilbenoid polyphenols group that encompasses two phenol rings linked by ethylene bonds. Several plant species and foods, including grape skin and seeds, are the primary source of this compound. Resveratrol is known to possess potent anti-inflammatory, antiproliferative, and immunoregulatory properties. Among the notable bioactivities associated with resveratrol, its pivotal role in safeguarding the intestinal barrier is highlighted for its capacity to prevent intestinal inflammation and regulate the gut microbiome. A better understanding of how oxidative stress can be controlled using resveratrol and its capability to protect the intestinal barrier from a gut microbiome perspective can shed more light on associated physiological conditions. Additionally, resveratrol exhibits antitumor activity, proving its potential for cancer treatment and prevention. Moreover, cardioprotective, vasorelaxant, phytoestrogenic, and neuroprotective benefits have also been reported. The pharmaceutical industry continues to encounter difficulties administering resveratrol owing to its inadequate bioavailability and poor solubility, which must be addressed simultaneously. This report summarizes the currently available literature unveiling the pharmacological effects of resveratrol.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Humans , Resveratrol/pharmacology , Resveratrol/therapeutic use , Polyphenols/pharmacology , Dietary Supplements , Colorectal Neoplasms/drug therapy
18.
J Ethnopharmacol ; 327: 117945, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38428659

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Erteng-Sanjie capsule (ETSJC) has therapeutic effects against gastric cancer (GC) and colorectal cancer (CRC). However, its underlying pharmacological mechanism remains unclear. AIM OF THE STUDY: To explore the pharmacological mechanism of ETSJC against GC and CRC via network pharmacology and in-vivo validation. MATERIALS AND METHODS: Data on the ingredients of ETSJC were obtained from the TCMSP and HERB databases. Further, details on the related targets of the active ingredients were collected from the HERB and SwissTargetPrediction databases. The targets in GC and CRC, which were screened from the OMIM, GeneCards, and TTD databases, were uploaded to STRING for a separate protein-protein interaction network analysis. The common targets shared by ETSJC, GC, and CRC were then screened. Cytoscape and STRING were used to construct the networks of herbs-compounds-targets and PPI. Metascape was utilized to analyze the enrichment of the GO and KEGG pathways. Molecular docking was used to validate the potential binding mode between the core ingredients and targets. Finally, the predicted results were verified with animal experiment. RESULTS: Eight core ingredients (resveratrol, quercetin, luteolin, baicalein, delphinidin, kaempferol, pinocembrin, and naringenin) and six core targets (TP53, SRC, PIK3R1, AKT1, MAPK3, and STAT3) were filtered via network analysis. The molecular mechanism mainly involved the positive regulation of various processes such as cell migration, protein phosphorylation, and the PI3K-Akt signaling pathway. Molecular docking revealed that the core ingredients could be significantly combined with all core targets. The animal experiment revealed that ETSJC could suppress proliferation and promote apoptosis of both GC and CRC tumor cells by regulating the PI3K/Akt signaling pathway. CONCLUSIONS: Multiple targets (TP53, SRC, AKT1, and STAT3) were important in GC and CRC. ETSJC could act on these targets and engage in different pathways against GC and CRC. Simultaneously, inhibiting the PI3K/Akt signaling pathway was a promising therapeutic mechanism for treating GC and CRC.


Subject(s)
Colorectal Neoplasms , Drugs, Chinese Herbal , Stomach Neoplasms , Animals , Network Pharmacology , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Stomach Neoplasms/drug therapy , Colorectal Neoplasms/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
19.
Cancer Lett ; 589: 216828, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38521199

ABSTRACT

5-Fluorouracil (5-FU) resistance has always been a formidable obstacle in the adjuvant treatment of advanced colorectal cancer (CRC). In recent years, long non-coding RNAs have emerged as key regulators in various pathophysiological processes including 5-FU resistance. TRG is a postoperative pathological score of the chemotherapy effectiveness for CRC, of which TRG 0-1 is classified as chemotherapy sensitivity and TRG 3 as chemotherapy resistance. Here, RNA-seq combined with weighted gene correlation network analysis confirmed the close association of GAS6-AS1 with TRG. GAS6-AS1 expression was positively correlated with advanced clinicopathological features and poor prognosis in CRC. GAS6-AS1 increased the 50% inhibiting concentration of 5-FU, enhanced cell proliferation and accelerated G1/S transition, both with and without 5-FU, both in vitro and in vivo. Mechanistically, GAS6-AS1 enhanced the stability of MCM3 mRNA by recruiting PCBP1, consequently increasing MCM3 expression. Furthermore, PCBP1 and MCM3 counteracted the effects of GAS6-AS1 on 5-FU resistance. Notably, the PDX model indicated that combining chemotherapeutic drugs with GAS6-AS1 knockdown yielded superior outcomes in vivo. Together, our findings elucidate that GAS6-AS1 directly binds to PCBP1, enhancing MCM3 expression and thereby promoting 5-FU resistance. GAS6-AS1 may serve as a robust biomarker and potential therapeutic target for combination therapy in CRC.


Subject(s)
Colorectal Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Minichromosome Maintenance Complex Component 3/genetics , Minichromosome Maintenance Complex Component 3/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
20.
Biomater Sci ; 12(9): 2292-2301, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38498328

ABSTRACT

Colorectal cancer (CRC) ranks among the most prevalent cancers globally, demanding innovative therapeutic strategies. Immunotherapy, a promising avenue, employs cancer vaccines to activate the immune system against tumors. However, conventional approaches fall short of eliciting robust responses within the gastrointestinal (GI) tract, where CRC originates. Harnessing the potential of all-trans retinoic acid (ATRA) and cytosine-phosphorothioate-guanine (CpG), we developed layered nanoparticles using a layer-by-layer assembly method to co-deliver these agents. ATRA, crucial for gut immunity, was efficiently encapsulated alongside CpG within these nanoparticles. Administering these ATRA@CpG-NPs, combined with ovalbumin peptide (OVA), effectively inhibited orthotopic CRC growth in mice. Our approach leveraged the inherent benefits of ATRA and CpG, demonstrating superior efficacy in activating dendritic cells, imprinting T cells with gut-homing receptors, and inhibiting tumor growth. This mucosal adjuvant presents a promising strategy for CRC immunotherapy, showcasing the potential for targeting gut-associated immune responses in combating colorectal malignancies.


Subject(s)
Colorectal Neoplasms , Dinucleoside Phosphates , Nanoparticles , Tretinoin , Tretinoin/chemistry , Tretinoin/administration & dosage , Tretinoin/pharmacology , Animals , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/immunology , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Mice , Humans , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/chemistry , Mice, Inbred C57BL , Female , Immunotherapy/methods , Ovalbumin/administration & dosage , Ovalbumin/immunology , Ovalbumin/chemistry , Cell Line, Tumor , Mice, Inbred BALB C , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/pharmacology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Layer-by-Layer Nanoparticles
SELECTION OF CITATIONS
SEARCH DETAIL